

StateLens: A Reverse Engineering Solution for Making Existing Dynamic Touchscreens Accessible

Anhong Guo, Junhan Kong, Michael Rivera, Frank F. Xu, Jeffrey P. Bigham

Human-Computer Interaction Institute School of Computer Science Carnegie Mellon University

Static Interfaces: VizLens

Guo et al. "Vizlens: A robust and interactive screen reader for interfaces in the real world." UIST 2016.

З

Tactile Markings

Guo et al. "Facade: Auto-generating tactile interfaces to **Static Interfaces: Facade** appliances." CHI 2017.

Dynamic Interfaces

Challenges:

- Visual user interfaces change

Static tactile overlays won't work Interactions often occur over multiple screens — Hard to search and navigate • Easy to accidentally trigger actions while exploring — Cannot touch and explore

StateLens

Blind user completing task with app guidance

3D-printed Finger Cap for risk-free exploration

Inaccessible Coffee **Machine Mockup**

Hot Beverages

Select strength

ular

0

Harklance

StateLens iOS app: at large, press it... move down slowly...

Blind user with wearable camera

StateLens Overview

- 1. Generate the State Diagram Reconstructing interface structure using usage videos
- 2. Access the State Diagram
 - Conversational agent
 - Interactive audio guidance
- 3. Risk-free exploration* accessories

*Kane et al. Slide rule. ASSETS 2008.

Allowing blind users to freely explore without accidentally trigger touches

Point-of-View Videos

Sources of Usage Videos

- IoT and surveillance cameras
- Sighted volunteers using mobile/wearable cameras
- Manufacturers to share videos
- Online repositories of demo/tutorials

Crowdsourced Labeling

Video 1

Video 2

Crowdsourced Labeling

Conversation Agent Example - Coffee Machine

Conversational Agent

- Natural language queries
- Summary based on frequent usage

right?

Gotcha. I will help you out!

- Select what would you like to drink from coffee drinks, hot beverages, and gourmet drinks.
- You can say: "I want large cappuccino".

I want a large coffee 50-50.

Can I get a summary?

Select strength from mild, regular and strong.

Strong.

You want large strong coffee 50-50, is that

Yes.

1 Welcome message from the initial state

- **2** Summary by aggregation
- **3** Parse required parameters: size = large $coffee_type = coffee 50-50$
- **4** Prompt missing parameter: strength = ?
- **5** Ask for confirmation

6 Proceed to guidance

and strong

Blind user specifying task with voice agent

Agent: select strength from mild, regular, and strong

Drink type Hot beverages

Strength Strong

Confirmation

Identify States Efficiently and Robustly

- User's finger location for *expected* state
- Neighboring states

Number of states

3. Accessories for Risk-Free Exploration

Blind user completing task with app guidance

3D-printed Finger Cap for risk-free exploration

Inaccessible Coffee **Machine Mockup**

Hot Beverages

Select strength

ular

0

Harklance

StateLens iOS app: at large, press it... move down slowly...

Blind user with wearable camera

Evaluation

• **Technical Evaluation:** 12 touchscreen devices (>70K frames), can accurately reconstruct interface structures from stationary, hand-held, and web videos

 Feature Effectiveness: ScreenDetect filtered out irrelevant frames in web videos, OCR retrieved states with only text changes, ScreenDetect+SURF+OCR the best

Evaluation

users to access inaccessible dynamic touchscreen devices

• [StateLens] gives much more flexibility, so that if the machine itself doesn't have speech, this can cover the instances where you have to interact with a touchscreen. [With StateLens,] there are more tools to access them. This combination opens up more accessibility. (P6) $\bullet \bullet$

*StateLens is not the ideal solution!

• User Study: 14 blind participants, the complete system successfully enables blind

Future Work

- Automatic Screen Actuation
 - 3D-printed accessories adds "riskfree exploration"
 - "the last (centi-)meter" problem
 - Hardware actuation proxies
 - Brushing interactions for automatic screen actuation

Future Work

Cognitive Assistance for Physical Interfaces

State Lens

• A human-Al system to make existing dynamic touchscreens accessible interactive guidance interfaces in the real world

make a selection

• Human: contribute usage videos, interpret user interface Machine: state diagram, conversation agent to provide

Energy Shot

Broadly augment how people interact with touchscreen

Human-Al Systems

Physical Interfaces Accessibility

Facade:

auto-generating tactile interfaces to appliances CHI 2017

VizLens:

interactive screen reader for physical interfaces UIST 2016

StateLens:

solution for existing dynamic touchscreens **UIST 2019**

Environmental Sensing

Zensors++:

camera sensing system to

answer real-world question

Ubicomp 2018

StateLens: A Reverse Engineering Solution for Making **Existing Dynamic Touchscreens Accessible**

Anhong Guo

PhD candidate, Human-Computer Interaction Institute School of Computer Science Carnegie Mellon University

anhongg@cs.cmu.edu https://guoanhong.com

